Are We Adequately Replacing Antibody In Patients With Primary Immunodeficiency?

Richard Schiff, MD, PhD Medical Director, Baxter BioScience FDA Workshop – April 13, 2005

Why Be Concerned

- IVIG is Made From Normal Healthy Donors
- Healthy People Have Low Levels of Antibody
- Antibody Titers May Be Falling
 - Vaccine vs Natural Infection
 - Measles
 - H. Flu B
 - Elimination of "High Risk" Donors
 - CMV
- # Higher Levels of Antibody May be Needed for Chronic Infections
- We Know Little of Antibody Titers During Replacement Clinical Studies Have Focused on IgG Levels Rather than Specific Antibody

Issues for Discussion

- Recommended Doses of IVIG have Increased Over the Years
 - What Does that Suggest?
- Antibody Titers in IVIG Preparations
 - Are the in vitro Titers Relevant?
- Do We Know Protective Levels of Antibody?
- Do Current Doses of IVIG Provide Adequate Levels of Specific Antibody?
- * Is Any One Else Concerned?

Initial Dose Recommendations

In the Beginning there was Intramuscular Gammaglobulin

Immunologists Looked Down, and Said it was Good And it Was:

Sepsis was Decreased

Meningitis was Decreased

Severe Pneumonia was Decreased

Chronic Infections Were Less Responsive

Efficacy of Gammaglobulin was Accepted by 1957

Suggestion that 100 mg/kg/mo > 25 or 50 mg/kg/mo

100 mg/kg/mo Upper Limit of IM Gammaglobulin

Initial Dose Trials

- First IVIG Studies Compared to IM
 - 100 mg/kg for Both
- First Trial of High Dose IVIG
 - 100 mg/kg vs 400 mg/kg
 - No Significant Difference
- Early Study of Dr. Pirofsky
 - 500 mg/kg > 150 mg/kg
 - Especially for Chronic Infection

Comparison of High- vs Low-Dose IGIV in Hypogammaglobulinemia

- Study design
 - 12 patients with hypogammaglobulinemia
 - All had chronic lung disease
 - PFT >25% below predicted
 - 12 month crossover: 200 mg/kg vs 600 mg/kg
 - No run-in or wash-out periods
 - Evaluated incidence of infection
 - Measured IgG levels
 - Measured pulmonary functions

Comparison of High- vs Low-Dose IGIV in Hypogammaglobulinemia

Results – Incidence of Infections

	IgG < 50	00 mg/dL	IgG > 500 mg/dL		
	Number of episodes	Number of patients	Number of episodes	Number of patients	
Upper respiratory	23	12	10	7	
Pneumonia	11	8	3	3	
Total infections	47	?	15	?	

Roifman C et al. Lancet. 1987;1:1075-1077.

Comparison of High- vs Low-Dose IGIV in Hypogammaglobulinemia

Results – Pulmonary Function

Reprinted with permission from Elsevier (Roifman C et al. Lancet. 1987;1:1075-1077).

Effect of Different IGIV Dosages in Hypogammaglobulinemia: Overview

Evaluation of dose effect on incidence and duration of infections

9 months

3 months

9 months

Group 1

High-dose IGIV

Wash-out Standard-dose IGIV

Group 2 Standard-dose IGIV

phase

High-dose IGIV

Effect of Different IGIV Dosages in Hypogammaglobulinemia: Results

	Adults/ children (mg/kg)	Infection rate (per patient)	Infection duration	Days to first infection	Serum trough plasma [lgG]
Standard– dose	300/400	3.5	33 days	82	6.5 g/L
Doubled – dose	600/800	2.5	21 days	123	9.4 g/L
		<i>P</i> =0.004	<i>P</i> =0.015		

Eijkhout H et al. Ann Int Med. 2001;135:165-174.

Effect of Different IGIV Dosages in Hypogammaglobulinemia: Conclusion

- High-dose IGIV significantly reduces the number and duration of infections
- Newly diagnosed patients should first be treated with standard-dose IGIV
- If two or more severe infections occur per year, the dosing regimen should be adjusted to increase plasma IgG level by 1–1.5 g/L
- This cycle may be repeated until a plasma IgG level of ~9.5 g/L is reached

Eijkhout H et al. Ann Int Med. 2001;135:165-174.

Effect of Dose Gamunex vs Gamimune-N

- Gamunex Group
 - 4/38 (10.5%) patients receiving > 400 mg/kg
 - 5/35 (14.3%) patients receiving < 400 mg/kg</p>
- Gamimune-N
 - (22.6%) patients receiving > 400 mg/kg
 - (23.8%) patients receiving < 400 mg/kg</p>

Effect of Trough IgG Level on Incidence of Validated Infections

		7777777777	
	Tro	ugh IgG Le	vel
	< 7	7-9	>9 g/L
Gamimune N	28.6%	23.1	19.2
Gairminume in	20.0/0	43.1	1914
Gamunex	13.6	15.2	5.6
Total	20.9	18.6	13.6

Roifman etal. International Imunopharmacology 2003; 3:1325-33.

Summary of Dose Studies

- Doses of 100 mg/kg Decreased Incidence of Acute, Overwhelming Infections
- Less Effective for Chronic Infections
 - Sinusitis or Lung Disease
- Recent Trials Indicate Increased Efficacy
 - Doses 300-600 mg/kg/month
 - IgG Levels of > 9 gm/L

Implications of Dose Studies

- At Least for Chronic Infections We Need to Provide Higher Amounts of Antibody to Some Organisms
- Don't Know Which Organisms are Relevant for Patients with Immune Deficiency
- Rely on Data for IVIG Products to Know What Antibodies are Being Provided

Evaluation of Antibody Titers

- Every Product Publishes Tables of Antibody Titers
- A Variety of Assays Used
 - Often Not Relevant to Clinical Use
- Question Whether Titers in IVIG Comparable to Those in Plasma
 - Assays Standardized to Plasma or Serum

ANTI-MICRO	BIAL ANTIE	BODY TITE	RS OF VA	RIOUS IVI	G PREPAR	ATIONS	
Antibody Titer	Method	Brand A	Brand B	Brand C	Brand D	Brand E	Brand F
CMV	EIA	253 ± 64	110 ± 27	160	246	129 ± 33	283 ± 3
Influenza A	CF	69 ± 13	32	64	181	44 ± 15	96 ± 45
EBV	IFA	5049 ± 3058	2560	6827	5973	1541 ± 205	4907 ± 302
VZV	EIA	1412 ± 174	698 ± 54	1051	1240	833 ± 252	1328 ± 60
Adenovirus	EIA	12 ± 2	6 ± 2	15	9	10 ± 1	7
HSV-1	EIA	43 ± 17	28 ± 9	22	61	34 ± 19	71 ± 11
HSV-2	EIA	34 ± 6	12 ± 2	20	70	13 ± 3	32
Para-influenza-1	CF	16 ± 1	5 ± 5	16	256	13	16
Para-influenza-2	CF	21 ± 8	8	16	136	13	24 ± 11
Para-influenza-3	CF	29 ± 7	8	32	64	18 ± 8	32
Hepatitis A	EIA	17813 ± 1904		14709	17781		
HbsAb	EIA	944 ± 299	952 ± 432	404	802	598 ± 195	1676 ± 917
Aspergillus	EIA	2.6 ± 1.4	0	2.2	0	0	0
M5G-candida	EIA	168 ± 20	237 ± 40	122	181	220 ± 44	107 ± 1
Teichoic Acid		1 ± 2	0	0	0	2 ± 4	0
H. Influenzae b	CF	17691 ± 697	23946 ± 6601	9533	14414	16787 ± 2951	17797 ± 856
Group B Strep	EIA	222 ± 26	261 ± 7	189	189	189 ± 33	154 ± 6
P. aeruginosa A	EIA	7 ± 1	4 ± 1	5	7	2	6
P. aeruginosa B	EIA	29 ± 10	12 ± 4	27	16	9 ± 3	11 ± 1
S.pneumo typ14	EIA	2608 ± 1204	7167 ± 1299	5583	9367	10831 ± 870	6242 ± 1591
S.pneumo typ 18	EIA	17989 ± 4640	20489 ± 1533	12833	18450	8398 ± 2210	4713 ± 6
S.pneumo typ 19	EIA	11106 ± 1210	15906 ± 742	8867	9483	12278 ± 3607	11563 ± 1102
S.pneumo typ 23	EIA	11422 ± 642	15811 ± 2601	9967	9158	17713 ± 3877	10246 ± 3730
							Baxter BioScience

Pneumococcal Antibody Levels in Normal Healthy Adults

Schiffman, G. In: Medical Microbiology, Chapter 6, 1983.

Antibody Titers in Patients

- Virtually Every Clinical Trial Has Evaluated only IgG Levels Not Specific Antibody
- Few Trials Have Used anti-Tetanus or Anti-Pneumococcal Antibody to Measure Half-Life
 - Did Not Report Actual Levels
- A Few Studies Have Evaluated anti-Pneumococcal Antibody in Patients
 - Used Opsonophagocytosis Assay
 - Suggested Protective Levels in Patients

Anti-CMV Activity of IGIV

- 42 CMV (-) BMT recipients
- * 500 mg/kg every 2 weeks. Post-infusion titers below.

Product	Neutralization Titer (plaque assay)	Anti-CMV ELISA (U/mL)
Gamimune N	1:14	1.34
Gammagard	1:43	2.95
Sandoglobulin	1:27	2.27
Polygam	1:26	2.03

Filopovich, L., et al, Blood, 1992

Conclusion

- Clinical Data Suggests that Higher Doses of IVIG More Effective for Chronic Infections
 - What Level of Antibody is Protective?
 - What Level of Antibody is Needed When Infected?
- Can We Determine Which Antibodies are Crucial to Improving Efficacy?
 - What are the Most Relevant Organisms?
- Are There Other Ways to Determine Optimal Dose Instead of Clinical Studies?
 - For Example, Antibody to Pneumococcus
- How Can We Address These Issues?

